@JsType(isNative=true, namespace="Cesium", name="Matrix3") public class Matrix3 extends Object
Modifier and Type | Field and Description |
---|---|
int |
length
Gets the number of items in the collection.
|
static int |
packedLength
The number of elements used to pack the object into an array.
|
Constructor and Description |
---|
Matrix3()
A 3x3 matrix, indexable as a column-major order array.
|
Matrix3(double column0Row0,
double column1Row0,
double column2Row0,
double column0Row1,
double column1Row1,
double column2Row1,
double column0Row2,
double column1Row2,
double column2Row2)
A 3x3 matrix, indexable as a column-major order array.
|
Modifier and Type | Method and Description |
---|---|
static Matrix3 |
abs(Matrix3 matrix,
Matrix3 result)
Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements.
|
static Matrix3 |
add(Matrix3 left,
Matrix3 right,
Matrix3 result)
Computes the sum of two matrices.
|
Matrix3 |
clone()
Duplicates the provided Matrix3 instance.
|
Matrix3 |
clone(Matrix3 result)
Duplicates the provided Matrix3 instance.
|
static Matrix3 |
clone(Matrix3 matrix,
Matrix3 result)
Duplicates a Matrix3 instance.
|
static int |
COLUMN0ROW0()
The index into Matrix3 for column 0, row 0.
|
static int |
COLUMN0ROW1()
The index into Matrix3 for column 0, row 1.
|
static int |
COLUMN0ROW2()
The index into Matrix3 for column 0, row 2
|
static int |
COLUMN1ROW0()
The index into Matrix3 for column 1, row 0.
|
static int |
COLUMN1ROW1()
The index into Matrix3 for column 1, row 1.
|
static int |
COLUMN1ROW2()
The index into Matrix3 for column 1, row 2.
|
static int |
COLUMN2ROW0()
The index into Matrix3 for column 2, row 0.
|
static int |
COLUMN2ROW1()
The index into Matrix3 for column 2, row 1.
|
static int |
COLUMN2ROW2()
The index into Matrix3 for column 2, row 2.
|
static Object |
computeEigenDecomposition(Matrix3 matrix)
Computes the eigenvectors and eigenvalues of a symmetric matrix.
|
static Object |
computeEigenDecomposition(Matrix3 matrix,
Object result)
Computes the eigenvectors and eigenvalues of a symmetric matrix.
|
static double |
determinant(Matrix3 matrix)
Computes the determinant of the provided matrix.
|
boolean |
equals(Matrix3 right)
Compares this matrix to the provided matrix componentwise and returns true if they are equal, false otherwise.
|
static boolean |
equals(Matrix3 left,
Matrix3 right)
Compares the provided matrices componentwise and returns true if they are equal, false otherwise.
|
boolean |
equalsEpsilon(Matrix3 right,
double epsilon)
Compares this matrix to the provided matrix componentwise and returns true if they are within the provided epsilon, false otherwise.
|
static boolean |
equalsEpsilon(Matrix3 left,
Matrix3 right,
double epsilon)
Compares the provided matrices componentwise and returns true if they are within the provided epsilon, false otherwise.
|
static Matrix3 |
fromArray(double[] array)
Creates a Matrix3 from 4 consecutive elements in an array.
|
static Matrix3 |
fromArray(double[] array,
int startingIndex)
Creates a Matrix3 from 4 consecutive elements in an array.
|
static Matrix3 |
fromArray(double[] array,
int startingIndex,
Matrix3 result)
Creates a Matrix3 from 4 consecutive elements in an array.
|
static Matrix3 |
fromColumnMajorArray(double[] values)
Creates a Matrix3 instance from a column-major order array.
|
static Matrix3 |
fromColumnMajorArray(double[] values,
Matrix3 result)
Creates a Matrix3 instance from a column-major order array.
|
static Matrix3 |
fromCrossProduct(Cartesian3 the)
Computes a Matrix3 instance representing the cross product equivalent matrix of a Cartesian3 vector.
|
static Matrix3 |
fromCrossProduct(Cartesian3 the,
Matrix3 result)
Computes a Matrix3 instance representing the cross product equivalent matrix of a Cartesian3 vector.
|
static Matrix3 |
fromQuaternion(Quaternion quaternion)
Computes a 3x3 rotation matrix from the provided quaternion.
|
static Matrix3 |
fromQuaternion(Quaternion quaternion,
Matrix3 result)
Computes a 3x3 rotation matrix from the provided quaternion.
|
static Matrix3 |
fromRotationX(double angle)
Creates a rotation matrix around the x-axis.
|
static Matrix3 |
fromRotationX(double angle,
Matrix3 result)
Creates a rotation matrix around the x-axis.
|
static Matrix3 |
fromRotationY(double angle)
Creates a rotation matrix around the y-axis.
|
static Matrix3 |
fromRotationY(double angle,
Matrix3 result)
Creates a rotation matrix around the y-axis.
|
static Matrix3 |
fromRotationZ(double angle,
Matrix3 result)
Creates a rotation matrix around the z-axis.
|
static Matrix3 |
fromRowMajorArray(double[] values)
Creates a Matrix3 instance from a row-major order array.
|
static Matrix3 |
fromRowMajorArray(double[] values,
Matrix3 result)
Creates a Matrix3 instance from a row-major order array.
|
static Matrix3 |
fromScale(Cartesian3 scale)
Computes a Matrix3 instance representing a non-uniform scale.
|
static Matrix3 |
fromScale(Cartesian3 scale,
Matrix3 result)
Computes a Matrix3 instance representing a non-uniform scale.
|
static Matrix3 |
fromUniformScale(double scale)
Computes a Matrix3 instance representing a uniform scale.
|
static Matrix3 |
fromUniformScale(double scale,
Matrix3 result)
Computes a Matrix3 instance representing a uniform scale.
|
static Cartesian3 |
getColumn(Matrix3 matrix,
int index,
Cartesian3 result)
Retrieves a copy of the matrix column at the provided index as a Cartesian3 instance.
|
static double |
getElementIndex(int row,
int column)
Computes the array index of the element at the provided row and column.
|
static double |
getMaximumScale(Matrix3 matrix)
Computes the maximum scale assuming the matrix is an affine transformation.
|
static Cartesian3 |
getRow(Matrix3 matrix,
int index,
Cartesian3 result)
Retrieves a copy of the matrix row at the provided index as a Cartesian3 instance.
|
static Cartesian3 |
getScale(Matrix3 matrix,
Cartesian3 result)
Extracts the non-uniform scale assuming the matrix is an affine transformation.
|
static Matrix3 |
IDENTITY()
An immutable Matrix3 instance initialized to the identity matrix.
|
static Matrix3 |
inverse(Matrix3 matrix,
Matrix3 result)
Computes the inverse of the provided matrix.
|
static Matrix3 |
multiply(Matrix3 left,
Matrix3 right,
Matrix3 result)
Computes the product of two matrices.
|
static Matrix3 |
multiplyByScalar(Matrix3 matrix,
double scalar,
Matrix3 result)
Computes the product of a matrix and a scalar.
|
static Matrix3 |
multiplyByScale(Matrix3 matrix,
Cartesian3 scale,
Matrix3 result)
Computes the product of a matrix times a (non-uniform) scale, as if the scale were a scale matrix.
|
static Cartesian3 |
multiplyByVector(Matrix3 matrix,
Cartesian3 cartesian,
Cartesian3 result)
Computes the product of a matrix and a column vector.
|
static Matrix3 |
negate(Matrix3 matrix,
Matrix3 result)
Creates a negated copy of the provided matrix.
|
static double[] |
pack(Matrix3 value,
double[] array)
Stores the provided instance into the provided array.
|
static double[] |
pack(Matrix3 value,
double[] array,
int startingIndex)
Stores the provided instance into the provided array.
|
static Matrix3 |
setColumn(Matrix3 matrix,
int index,
Cartesian3 cartesian,
Matrix3 result)
Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian3 instance.
|
static Matrix3 |
setRow(Matrix3 matrix,
int index,
Cartesian3 cartesian,
Matrix3 result)
Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian3 instance.
|
static Matrix3 |
subtract(Matrix3 left,
Matrix3 right,
Matrix3 result)
Computes the difference of two matrices.
|
static double[] |
toArray(Matrix3 matrix)
Creates an Array from the provided Matrix3 instance.
|
static double[] |
toArray(Matrix3 matrix,
double[] result)
Creates an Array from the provided Matrix3 instance.
|
String |
toString()
Creates a string representing this Matrix with each row being on a separate line and in the format '(column0, column1)'.
|
static Matrix3 |
transpose(Matrix3 matrix,
Matrix3 result)
Computes the transpose of the provided matrix.
|
static Matrix3 |
unpack(double[] array)
Retrieves an instance from a packed array.
|
static Matrix3 |
unpack(double[] array,
int startingIndex)
Retrieves an instance from a packed array.
|
static Matrix3 |
unpack(double[] array,
int startingIndex,
Matrix3 result)
Retrieves an instance from a packed array.
|
static Matrix3 |
ZERO()
An immutable Matrix3 instance initialized to the zero matrix.
|
@JsProperty public int length
@JsProperty public static int packedLength
@JsConstructor public Matrix3()
@JsConstructor public Matrix3(double column0Row0, double column1Row0, double column2Row0, double column0Row1, double column1Row1, double column2Row1, double column0Row2, double column1Row2, double column2Row2)
column0Row0
- The value for column 0, row 0.column1Row0
- The value for column 1, row 0.column2Row0
- The value for column 2, row 0.column0Row1
- The value for column 0, row 1.column1Row1
- The value for column 1, row 1.column2Row1
- The value for column 2, row 1.column0Row2
- The value for column 0, row 2.column1Row2
- The value for column 1, row 2.column2Row2
- The value for column 2, row 2.fromColumnMajorArray(double[])
,
fromColumnMajorArray(double[], Matrix3)
,
fromRowMajorArray(double[])
,
fromRowMajorArray(double[], Matrix3)
,
fromScale(Cartesian3)
,
fromScale(Cartesian3, Matrix3)
,
Matrix2
,
Matrix4
@JsProperty(name="COLUMN0ROW0") public static int COLUMN0ROW0()
@JsProperty(name="COLUMN0ROW1") public static int COLUMN0ROW1()
@JsProperty(name="COLUMN0ROW2") public static int COLUMN0ROW2()
@JsProperty(name="COLUMN1ROW0") public static int COLUMN1ROW0()
@JsProperty(name="COLUMN1ROW1") public static int COLUMN1ROW1()
@JsProperty(name="COLUMN1ROW2") public static int COLUMN1ROW2()
@JsProperty(name="COLUMN2ROW0") public static int COLUMN2ROW0()
@JsProperty(name="COLUMN2ROW1") public static int COLUMN2ROW1()
@JsProperty(name="COLUMN2ROW2") public static int COLUMN2ROW2()
@JsProperty(name="IDENTITY") public static Matrix3 IDENTITY()
@JsProperty(name="ZERO") public static Matrix3 ZERO()
@JsMethod public Matrix3 clone()
@JsMethod public Matrix3 clone(Matrix3 result)
result
- The object onto which to store the result.@JsMethod public boolean equals(Matrix3 right)
right
- The right hand side matrix.@JsMethod public boolean equalsEpsilon(Matrix3 right, double epsilon)
right
- The right hand side matrix.epsilon
- The epsilon to use for equality testing.@JsMethod public String toString()
@JsMethod public static Matrix3 abs(Matrix3 matrix, Matrix3 result)
matrix
- The matrix with signed elements.result
- The object onto which to store the result.@JsMethod public static Matrix3 add(Matrix3 left, Matrix3 right, Matrix3 result)
left
- The first matrix.right
- The second matrix.result
- The object onto which to store the result.@JsMethod public static Matrix3 clone(Matrix3 matrix, Matrix3 result)
matrix
- The matrix to duplicate.result
- The object onto which to store the result.@JsMethod public static Object computeEigenDecomposition(Matrix3 matrix)
matrix
- The matrix to decompose into diagonal and unitary matrix. Expected to be symmetric.@JsMethod public static Object computeEigenDecomposition(Matrix3 matrix, Object result)
matrix
- The matrix to decompose into diagonal and unitary matrix. Expected to be symmetric.result
- An object with unitary and diagonal properties which are matrices onto which to store the result.@JsMethod public static double determinant(Matrix3 matrix)
matrix
- The matrix to use.@JsMethod public static boolean equals(Matrix3 left, Matrix3 right)
left
- The first matrix.right
- The second matrix.@JsMethod public static boolean equalsEpsilon(Matrix3 left, Matrix3 right, double epsilon)
left
- The first matrix.right
- The second matrix.epsilon
- The epsilon to use for equality testing.@JsMethod public static Matrix3 fromArray(double[] array)
// Create the Matrix3:
// [1.0, 2.0, 3.0]
// [1.0, 2.0, 3.0]
// [1.0, 2.0, 3.0]
double[] v = {1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0};
Matrix3 m = Matrix3.fromArray(v);
// Create same Matrix3 with using an offset into an array
double[] v2 = {0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0};
Matrix3 m2 = Matrix3.fromArray(v2, 2);
array
- The array whose 4 consecutive elements correspond to the positions of the matrix. Assumes column-major order.@JsMethod public static Matrix3 fromArray(double[] array, int startingIndex)
// Create the Matrix3:
// [1.0, 2.0, 3.0]
// [1.0, 2.0, 3.0]
// [1.0, 2.0, 3.0]
double[] v = {1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0};
Matrix3 m = Matrix3.fromArray(v);
// Create same Matrix3 with using an offset into an array
double[] v2 = {0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0};
Matrix3 m2 = Matrix3.fromArray(v2, 2);
array
- The array whose 4 consecutive elements correspond to the positions of the matrix. Assumes column-major order.startingIndex
- The offset into the array of the first element, which corresponds to first column first row position in the matrix.
Default 0@JsMethod public static Matrix3 fromArray(double[] array, int startingIndex, Matrix3 result)
// Create the Matrix3:
// [1.0, 2.0, 3.0]
// [1.0, 2.0, 3.0]
// [1.0, 2.0, 3.0]
double[] v = {1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0};
Matrix3 m = Matrix3.fromArray(v);
// Create same Matrix3 with using an offset into an array
double[] v2 = {0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0};
Matrix3 m2 = Matrix3.fromArray(v2, 2);
array
- The array whose 4 consecutive elements correspond to the positions of the matrix. Assumes column-major order.startingIndex
- The offset into the array of the first element, which corresponds to first column first row position in the matrix.
Default 0result
- The object onto which to store the result.@JsMethod public static Matrix3 fromColumnMajorArray(double[] values)
values
- The column-major order array.@JsMethod public static Matrix3 fromColumnMajorArray(double[] values, Matrix3 result)
values
- The column-major order array.result
- The object in which the result will be stored, if undefined a new instance will be created.@JsMethod public static Matrix3 fromCrossProduct(Cartesian3 the)
Example:
// Creates
// [0.0, -9.0, 8.0]
// [9.0, 0.0, -7.0]
// [-8.0, 7.0, 0.0]
Matrix3 m = Matrix3.fromCrossProduct(new Cartesian3(7.0, 8.0, 9.0));
the
- vector on the left hand side of the cross product operation.@JsMethod public static Matrix3 fromCrossProduct(Cartesian3 the, Matrix3 result)
Example:
// Creates
// [0.0, -9.0, 8.0]
// [9.0, 0.0, -7.0]
// [-8.0, 7.0, 0.0]
Matrix3 m = Matrix3.fromCrossProduct(new Cartesian3(7.0, 8.0, 9.0));
the
- vector on the left hand side of the cross product operation.result
- The object in which the result will be stored, if undefined a new instance will be created.@JsMethod public static Matrix3 fromQuaternion(Quaternion quaternion)
quaternion
- the quaternion to use.@JsMethod public static Matrix3 fromQuaternion(Quaternion quaternion, Matrix3 result)
quaternion
- the quaternion to use.result
- The object in which the result will be stored, if undefined a new instance will be created.@JsMethod public static Matrix3 fromRotationX(double angle)
// Rotate a point 45 degrees counterclockwise around the x-axis.
Cartesian3 p = new Cartesian3(5, 6, 7);
Matrix3 m = Matrix3.fromRotationX(Math.toRadians(45.0));
Matrix3 rotated = Matrix3.multiplyByVector(m, p, new Cartesian3());
angle
- The angle, in radians, of the rotation. Positive angles are counterclockwise.@JsMethod public static Matrix3 fromRotationX(double angle, Matrix3 result)
// Rotate a point 45 degrees counterclockwise around the x-axis.
Cartesian3 p = new Cartesian3(5, 6, 7);
Matrix3 m = Matrix3.fromRotationX(Math.toRadians(45.0));
Matrix3 rotated = Matrix3.multiplyByVector(m, p, new Cartesian3());
angle
- The angle, in radians, of the rotation. Positive angles are counterclockwise.result
- The object in which the result will be stored, if undefined a new instance will be created.@JsMethod public static Matrix3 fromRotationY(double angle)
// Rotate a point 45 degrees counterclockwise around the y-axis.
Cartesian3 p = new Cartesian3(5, 6, 7);
Matrix3 m = Matrix3.fromRotationY(Math.toRadians(45.0));
Matrix3 rotated = Matrix3.multiplyByVector(m, p, new Cartesian3());
angle
- The angle, in radians, of the rotation. Positive angles are counterclockwise.@JsMethod public static Matrix3 fromRotationY(double angle, Matrix3 result)
// Rotate a point 45 degrees counterclockwise around the y-axis.
Cartesian3 p = new Cartesian3(5, 6, 7);
Matrix3 m = Matrix3.fromRotationY(Math.toRadians(45.0));
Matrix3 rotated = Matrix3.multiplyByVector(m, p, new Cartesian3());
angle
- The angle, in radians, of the rotation. Positive angles are counterclockwise.result
- The object in which the result will be stored, if undefined a new instance will be created.@JsMethod public static Matrix3 fromRotationZ(double angle, Matrix3 result)
// Rotate a point 45 degrees counterclockwise around the z-axis.
Cartesian3 p = new Cartesian3(5, 6, 7);
Matrix3 m = Matrix3.fromRotationZ(Math.toRadians(45.0));
Matrix3 rotated = Matrix3.multiplyByVector(m, p, new Cartesian3());
angle
- The angle, in radians, of the rotation. Positive angles are counterclockwise.result
- The object in which the result will be stored, if undefined a new instance will be created.@JsMethod public static Matrix3 fromRowMajorArray(double[] values)
values
- The row-major order array.@JsMethod public static Matrix3 fromRowMajorArray(double[] values, Matrix3 result)
values
- The row-major order array.result
- The object in which the result will be stored, if undefined a new instance will be created.@JsMethod public static Matrix3 fromScale(Cartesian3 scale)
// Creates
// [7.0, 0.0]
// [0.0, 8.0]
Matrix3 m = Matrix3.fromScale(new Cartesian3(7.0, 8.0));
scale
- The x and y scale factors.@JsMethod public static Matrix3 fromScale(Cartesian3 scale, Matrix3 result)
// Creates
// [7.0, 0.0]
// [0.0, 8.0]
Matrix3 m = Matrix3.fromScale(new Cartesian3(7.0, 8.0));
scale
- The x and y scale factors.result
- The object in which the result will be stored, if undefined a new instance will be created.@JsMethod public static Matrix3 fromUniformScale(double scale)
// Creates
// [2.0, 0.0]
// [0.0, 2.0]
Matrix m = Matrix3.fromUniformScale(2.0);
scale
- The uniform scale factor.@JsMethod public static Matrix3 fromUniformScale(double scale, Matrix3 result)
// Creates
// [2.0, 0.0]
// [0.0, 2.0]
Matrix m = Matrix3.fromUniformScale(2.0);
scale
- The uniform scale factor.result
- The object in which the result will be stored, if undefined a new instance will be created.@JsMethod public static Cartesian3 getColumn(Matrix3 matrix, int index, Cartesian3 result)
matrix
- The matrix to use.index
- The zero-based index of the column to retrieve.result
- The object onto which to store the result.@JsMethod public static double getElementIndex(int row, int column)
Matrix3 myMatrix = new Matrix3();
int column1Row0Index = Matrix3.getElementIndex(1, 0);
int column1Row0 = myMatrix[column1Row0Index]
myMatrix[column1Row0Index] = 10.0;
row
- The zero-based index of the row.column
- The zero-based index of the column.@JsMethod public static double getMaximumScale(Matrix3 matrix)
matrix
- Matrix3 The matrix.@JsMethod public static Cartesian3 getRow(Matrix3 matrix, int index, Cartesian3 result)
matrix
- The matrix to use.index
- The zero-based index of the row to retrieve.result
- The object onto which to store the result.@JsMethod public static Cartesian3 getScale(Matrix3 matrix, Cartesian3 result)
matrix
- The matrix.result
- The object onto which to store the result.@JsMethod public static Matrix3 inverse(Matrix3 matrix, Matrix3 result)
matrix
- The matrix to invert.result
- The object onto which to store the result.@JsMethod public static Matrix3 multiply(Matrix3 left, Matrix3 right, Matrix3 result)
left
- The first matrix.right
- The second matrix.result
- The object onto which to store the result.@JsMethod public static Matrix3 multiplyByScalar(Matrix3 matrix, double scalar, Matrix3 result)
matrix
- The matrix.scalar
- The number to multiply by.result
- The object onto which to store the result.@JsMethod public static Matrix3 multiplyByScale(Matrix3 matrix, Cartesian3 scale, Matrix3 result)
Example:
// Instead of Cesium.Matrix3.multiply(m, Cesium.Matrix3.fromScale(scale), m);
Matrix3.multiplyByScale(m, scale, m);
matrix
- The matrix on the left-hand side.scale
- The non-uniform scale on the right-hand side.result
- The object onto which to store the result.fromScale(org.cesiumjs.cs.core.Cartesian3)
,
fromScale(org.cesiumjs.cs.core.Cartesian3, org.cesiumjs.cs.core.Matrix3)
@JsMethod public static Cartesian3 multiplyByVector(Matrix3 matrix, Cartesian3 cartesian, Cartesian3 result)
matrix
- The matrix.cartesian
- The column.result
- The object onto which to store the result.@JsMethod public static Matrix3 negate(Matrix3 matrix, Matrix3 result)
matrix
- The matrix to negate.result
- The object onto which to store the result.@JsMethod public static double[] pack(Matrix3 value, double[] array)
value
- The value to pack.array
- The value to pack.@JsMethod public static double[] pack(Matrix3 value, double[] array, int startingIndex)
value
- The value to pack.array
- The value to pack.startingIndex
- The index into the array at which to start packing the elements. Default: 0@JsMethod public static Matrix3 setColumn(Matrix3 matrix, int index, Cartesian3 cartesian, Matrix3 result)
matrix
- The matrix to use.index
- The zero-based index of the column to set.cartesian
- The Cartesian whose values will be assigned to the specified column.result
- The object onto which to store the result.@JsMethod public static Matrix3 setRow(Matrix3 matrix, int index, Cartesian3 cartesian, Matrix3 result)
matrix
- The matrix to use.index
- The zero-based index of the row to set.cartesian
- The Cartesian whose values will be assigned to the specified row.result
- The object onto which to store the result.@JsMethod public static Matrix3 subtract(Matrix3 left, Matrix3 right, Matrix3 result)
left
- The first matrix.right
- The second matrix.result
- The object onto which to store the result.@JsMethod public static double[] toArray(Matrix3 matrix)
matrix
- The matrix to use.@JsMethod public static double[] toArray(Matrix3 matrix, double[] result)
matrix
- The matrix to use.result
- The Array onto which to store the result.@JsMethod public static Matrix3 transpose(Matrix3 matrix, Matrix3 result)
matrix
- The matrix to transpose.result
- The object onto which to store the result.@JsMethod public static Matrix3 unpack(double[] array)
array
- The packed array.@JsMethod public static Matrix3 unpack(double[] array, int startingIndex)
array
- The packed array.startingIndex
- The starting index of the element to be unpacked.@JsMethod public static Matrix3 unpack(double[] array, int startingIndex, Matrix3 result)
array
- The packed array.startingIndex
- The starting index of the element to be unpacked.result
- The object into which to store the result.Copyright © 2019. All rights reserved.